Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Deformations of Lie brackets: cohomological aspects

Marius Crainic, Ieke Moerdijk (2008)

Journal of the European Mathematical Society

We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.

Degree estimate for subalgebras generated by two elements

Leonid Makar-Limanov, Jie-Tai Yu (2008)

Journal of the European Mathematical Society

We develop a new combinatorial method to deal with a degree estimate for subalgebras generated by two elements in different environments. We obtain a lower bound for the degree of the elements in two-generated subalgebras of a free associative algebra over a field of zero characteristic. We also reproduce a somewhat refined degree estimate of Shestakov and Umirbaev for the polynomial algebra, which plays an essential role in the recent celebrated solution of the Nagata conjecture and the strong...

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara, Rajendra K. Sharma (2008)

Czechoslovak Mathematical Journal

Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.

Differential calculus on almost commutative algebras and applications to the quantum hyperplane

Cătălin Ciupală (2005)

Archivum Mathematicum

In this paper we introduce a new class of differential graded algebras named DG ρ -algebras and present Lie operations on this kind of algebras. We give two examples: the algebra of forms and the algebra of noncommutative differential forms of a  ρ -algebra. Then we introduce linear connections on a  ρ -bimodule M over a  ρ -algebra  A and extend these connections to the space of forms from A to M . We apply these notions to the quantum hyperplane.

Currently displaying 1 – 20 of 31

Page 1 Next