Displaying 541 – 560 of 831

Showing per page

Rings Graded By a Generalized Group

Farzad Fatehi, Mohammad Reza Molaei (2014)

Topological Algebra and its Applications

The aim of this paper is to consider the ringswhich can be graded by completely simple semigroups. We show that each G-graded ring has an orthonormal basis, where G is a completely simple semigroup. We prove that if I is a complete homogeneous ideal of a G-graded ring R, then R/I is a G-graded ring.We deduce a characterization of the maximal ideals of a G-graded ring which are homogeneous. We also prove that if R is a Noetherian graded ring, then each summand of it is also a Noetherian module..

Rota-Baxter operators and Bernoulli polynomials

Vsevolod Gubarev (2021)

Communications in Mathematics

We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.

Semiprime rings with nilpotent Lie ring of inner derivations

Kamil Kular (2014)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions

Skew derivations and the nil and prime radicals

Jeffrey Bergen, Piotr Grzeszczuk (2012)

Colloquium Mathematicae

We examine when the nil and prime radicals of an algebra are stable under q-skew σ-derivations. We provide an example which shows that even if q is not a root of 1 or if δ and σ commute in characteristic 0, then the nil and prime radicals need not be δ-stable. However, when certain finiteness conditions are placed on δ or σ, then the nil and prime radicals are δ-stable.

Currently displaying 541 – 560 of 831