On maximal chains in the lattice of module topologies.
Let be a -prime left near-ring with multiplicative center , a -derivation on is defined to be an additive endomorphism satisfying the product rule for all , where and are automorphisms of . A nonempty subset of will be called a semigroup right ideal (resp. semigroup left ideal) if (resp. ) and if is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let be a
Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel's axioms for a semiordered field differ from the usual (Artin-Schreier) postulates in requiring only the closedness of the domain of positivity under x ↦ xa² for non-zero a, in place of requiring that positive elements have a positive product. Our aim in this work is to study this type of ordering in the case of a division ring. We show that it actually behaves just as in the commutative...
Prestel introduced a generalization of the notion of an ordering of a field, which is called a semiordering. Prestel’s axioms for a semiordered field differ from the usual (Artin-Schreier) postulates in requiring only the closedness of the domain of positivity under for nonzero , instead of requiring that positive elements have a positive product. In this work, this type of ordering is studied in the case of a division ring. It is shown that it actually behaves the same as in the commutative...
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups for which is regular is given.
Let be a commutative ring and a given multiplicative set. Let be a strictly ordered monoid satisfying the condition that for every . Then it is shown, under some additional conditions, that the generalized power series ring is -Noetherian if and only if is -Noetherian and is finitely generated.
Let be a prime ring with center and be a nonzero ideal of . In this manuscript, we investigate the action of skew derivation of which acts as a homomorphism or an anti-homomorphism on . Moreover, we provide an example for semiprime case.