Displaying 141 – 160 of 825

Showing per page

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara, Rajendra K. Sharma (2008)

Czechoslovak Mathematical Journal

Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.

Differential calculus on almost commutative algebras and applications to the quantum hyperplane

Cătălin Ciupală (2005)

Archivum Mathematicum

In this paper we introduce a new class of differential graded algebras named DG ρ -algebras and present Lie operations on this kind of algebras. We give two examples: the algebra of forms and the algebra of noncommutative differential forms of a  ρ -algebra. Then we introduce linear connections on a  ρ -bimodule M over a  ρ -algebra  A and extend these connections to the space of forms from A to M . We apply these notions to the quantum hyperplane.

Currently displaying 141 – 160 of 825