Théorèmes de dualité pour les faisceaux algébriques cohérents
We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated...
This paper illustrates the themes of the title in terms of: van Kampen type theorems for the fundamental groupoid; holonomy and monodromy groupoids; and higher homotopy groupoids. Interaction with work of the writer is explored.
Let be any rational surface. We construct a tilting bundle on . Moreover, we can choose in such way that its endomorphism algebra is quasi-hereditary. In particular, the bounded derived category of coherent sheaves on is equivalent to the bounded derived category of finitely generated modules over a finite dimensional quasi-hereditary algebra . The construction starts with a full exceptional sequence of line bundles on and uses universal extensions. If is any smooth projective variety...