Transitivity in uniform approach theory.
We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao’s result on the finite dimensional algebra of finite global dimension. As the first application, if , are flat algebras over a commutative...
We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for for big enough (and we give a conjecture for smaller values of ). We also study the “twisting spectral sequence” converging to the extension groups between the...
M. Herschend, Y. Liu, H. Nakaoka introduced -exangulated categories, which are a simultaneous generalization of -exact categories and -angulated categories. This paper consists of two results on -exangulated categories: (1) we give an equivalent characterization of axiom (EA2); (2) we provide a new way to construct a closed subfunctor of an -exangulated category.