Page 1 Next

Displaying 1 – 20 of 30

Showing per page

𝒯 -semiring pairs

Jaiung Jun, Kalina Mincheva, Louis Rowen (2022)

Kybernetika

We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.

Exponential Objects

Marco Riccardi (2015)

Formalized Mathematics

In the first part of this article we formalize the concepts of terminal and initial object, categorical product [4] and natural transformation within a free-object category [1]. In particular, we show that this definition of natural transformation is equivalent to the standard definition [13]. Then we introduce the exponential object using its universal property and we show the isomorphism between the exponential object of categories and the functor category [12].

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...

Models of sketches

Michael Barr (1986)

Cahiers de Topologie et Géométrie Différentielle Catégoriques

Object-Free Definition of Categories

Marco Riccardi (2013)

Formalized Mathematics

Category theory was formalized in Mizar with two different approaches [7], [18] that correspond to those most commonly used [16], [5]. Since there is a one-to-one correspondence between objects and identity morphisms, some authors have used an approach that does not refer to objects as elements of the theory, and are usually indicated as object-free category [1] or as arrowsonly category [16]. In this article is proposed a new definition of an object-free category, introducing the two properties:...

On the L -valued categories of L - E -ordered sets

Olga Grigorenko (2012)

Kybernetika

The aim of this paper is to construct an L -valued category whose objects are L - E -ordered sets. To reach the goal, first, we construct a category whose objects are L - E -ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). For the morphisms of the category we define the degree to which each morphism is an order-preserving mapping and as a result we obtain an L -valued category. Further we investigate the properties of this category, namely, we observe some special objects, special...

Currently displaying 1 – 20 of 30

Page 1 Next