Displaying 341 – 360 of 834

Showing per page

g -monomorphisms

Manh Quy Nguyen (1973)

Commentationes Mathematicae Universitatis Carolinae

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...

Generic representations of orthogonal groups: projective functors in the category q u a d

Christine Vespa (2008)

Fundamenta Mathematicae

We continue the study of the category of functors q u a d , associated to ₂-vector spaces equipped with a nondegenerate quadratic form, initiated in J. Pure Appl. Algebra 212 (2008) and Algebr. Geom. Topology 7 (2007). We define a filtration of the standard projective objects in q u a d ; this refines to give a decomposition into indecomposable factors of the first two standard projective objects in q u a d : P H and P H . As an application of these two decompositions, we give a complete description of the polynomial functors...

Graph Cohomology, Colored Posets and Homological Algebra in Functor Categories

Jolanta Słomińska (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

The homology theory of colored posets, defined by B. Everitt and P. Turner, is generalized. Two graph categories are defined and Khovanov type graph cohomology are interpreted as Ext* groups in functor categories associated to these categories. The connection, described by J. H. Przytycki, between the Hochschild homology of an algebra and the graph cohomology, defined for the same algebra and a cyclic graph, is explained from the point of view of homological algebra in functor categories.

Hereditarity of closure operators and injectivity

Gabriele Castellini, Eraldo Giuli (1992)

Commentationes Mathematicae Universitatis Carolinae

A notion of hereditarity of a closure operator with respect to a class of monomorphisms is introduced. Let C be a regular closure operator induced by a subcategory 𝒜 . It is shown that, if every object of 𝒜 is a subobject of an 𝒜 -object which is injective with respect to a given class of monomorphisms, then the closure operator C is hereditary with respect to that class of monomorphisms.

Currently displaying 341 – 360 of 834