Catégories et structures : extraits
The main goal of the present paper is to unify two commonly used models of directed spaces: d-spaces and streams. To achieve this, we provide certain "goodness" conditions for d-spaces and streams. Then we prove that the categories of good d-spaces and good streams are isomorphic. Next, we prove that the category of good d-spaces is complete, cocomplete, and cartesian closed (assuming we restrict to compactly generated weak Hausdorff spaces). The category of good d-spaces is large enough to contain...
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.