Page 1 Next

Displaying 1 – 20 of 22

Showing per page

On ℤ/2ℤ-extensions of pointed fusion categories

Leonid Vainerman, Jean-Michel Vallin (2012)

Banach Center Publications

We give a classification of ℤ/2ℤ-graded fusion categories whose 0-component is a pointed fusion category. A number of concrete examples are considered.

On fuzzification of the notion of quantaloid

Sergey A. Solovyov (2010)

Kybernetika

The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of -semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At...

On Lie algebras in braided categories

Bodo Pareigis (1997)

Banach Center Publications

The category of group-graded modules over an abelian group G is a monoidal category. For any bicharacter of G this category becomes a braided monoidal category. We define the notion of a Lie algebra in this category generalizing the concepts of Lie super and Lie color algebras. Our Lie algebras have n -ary multiplications between various graded components. They possess universal enveloping algebras that are Hopf algebras in the given category. Their biproducts with the group ring are noncommutative...

On systems of linear inequalities

Masami Fujimori (2003)

Bulletin de la Société Mathématique de France

We show in detail that the category of general Roth systems or the category of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian category. On the way, we present a new proof of the semi-stability of the tensor product of semi-stable systems. The proof is based on a numerical criterion for a system of linear inequalities to be semi-stable.

On the homotopy transfer of A structures

Jakub Kopřiva (2017)

Archivum Mathematicum

The present article is devoted to the study of transfers for A structures, their maps and homotopies, as developed in [7]. In particular, we supply the proofs of claims formulated therein and provide their extension by comparing them with the former approach based on the homological perturbation lemma.

On the structure of halfdiagonal-halfterminal-symmetric categories with diagonal inversions

Hans-Jürgen Vogel (2001)

Discussiones Mathematicae - General Algebra and Applications

The category of all binary relations between arbitrary sets turns out to be a certain symmetric monoidal category Rel with an additional structure characterized by a family d = ( d A : A A A | A | R e l | ) of diagonal morphisms, a family t = ( t A : A I | A | R e l | ) of terminal morphisms, and a family = ( A : A A A | A | R e l | ) of diagonal inversions having certain properties. Using this properties in [11] was given a system of axioms which characterizes the abstract concept of a halfdiagonal-halfterminal-symmetric monoidal category with diagonal inversions (hdht∇s-category)....

Currently displaying 1 – 20 of 22

Page 1 Next