Vers une interprétation galoisienne de la théorie de l'homotopie
In [2], Fuchs and Viljoen introduced and classified the -modules for a valuation ring R: an R-module M is a -module if for each divisible module X and each torsion module X with bounded order. The concept of a -module was extended to the setting of a torsion theory over an associative ring in [14]. In the present paper, we use categorical methods to investigate the -modules for a group graded ring. Our most complete result (Theorem 4.10) characterizes -modules for a strongly graded ring R...
Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.