-homotopy theory of schemes
We show that every small homotopy functor from spectra to spectra is weakly equivalent to a filtered colimit of representable functors represented in cofibrant spectra. Moreover, we present this classification as a Quillen equivalence of the category of small functors from spectra to spectra equipped with the homotopy model structure and the opposite of the pro-category of spectra with the strict model structure.
We construct a simplicial locally convex algebra, whose weak dual is the standard cosimplicial topological space. The construction is carried out in a purely categorical way, so that it can be used to construct (co)simplicial objects in a variety of categories --- in particular, the standard cosimplicial topological space can be produced.
On présente une définition et une construction unifée des homologies et cohomologies d’algèbres et de modules sur ces algèbres et de modules sur ces algèbres dans le cas d’algèbres associatives ou commutatives ou de Lie ou de Gertsenhaber. On sépare la construction linéaire des cogèbres ou bicogèbres qui traduisent les symétries des relations de définition de la structure de la partie structure qui apparaît ici comme une codérivation de degré 1 et de carré nul de la cogèbre ou de la bicogèbre.