Categorical strong shape theory
Cet article présente la construction de la catégorie homotopique stable d’un site suspendu avec intervalle arbitraire. La fonctorialité de cette construction est étudiée, avec des applications à la théorie homotopique des schémas introduite par F. Morel et V. Voevodsky.
Ces notes sont consacrées à la construction de dérivateurs à partir d’une nouvelle notion de catégorie de modèles assez générale pour recouvrir les théories de Quillen, Thomason et Brown. On développe en particulier la théorie des catégories exactes dérivables (par exemple les catégories de Frobenius et les catégories biWaldhausen compliciales vérifiant de bonnes propriétés de stabilité homotopique), lesquelles donnent lieu à des dérivateurs triangulés. On donne une caractérisation combinatoire...
Finite type nilpotent spaces are weakly equivalent if and only if their singular cochains are quasi-isomorphic as E∞ algebras. The cochain functor from the homotopy category of finite type nilpotent spaces to the homotopy category of E∞ algebras is faithful but not full.
Let G be a finite group, the category of canonical orbits of G and b a contravariant functor to the category of abelian groups. We investigate the set of G-homotopy classes of comultiplications of a Moore G-space of type (A,n) where n ≥ 2 and prove that if such a Moore G-space X is a cogroup, then it has a unique comultiplication if dim X < 2n - 1. If dim X = 2n-1, then the set of comultiplications of X is in one-one correspondence with . Then the case leads to an example of infinitely...
Dans ce papier, on définit, dans le cadre des algèbres graduées avec symétries la notion de cup -produit introduite par Steenrod dans [11]. En utilisant le cup 1-produit, on montre que la cohomologie associée à une algèbre graduée avec symétries est une algèbre de Gerstenhaber.