Sur la complétion de la -théorie équivariante
On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.
On introduit une opérade anticyclique définie par une présentation ternaire quadratique. On montre qu’elle admet une base indexée par les arbres binaires planaires. On relie cette construction à la famille des treillis de Tamari en construisant un isomorphisme entre et le groupe de Grothendieck de la catégorie qui envoie la base de sur les classes des modules projectifs et qui transforme la structure anticyclique de en la transformation de Coxeter de la catégorie dérivée de . La dualité...
To apply surgery theory to the problem of classifying pairs of closed manifolds, it is necessary to know the subgroup of the group generated by those elements which are realized by normal maps to a pair of closed manifolds. This closely relates to the surgery problem for a closed manifold and to the computation of the assembly map. In this paper we completely determine such subgroups for many cases of Browder-Livesay pairs of closed manifolds. Moreover, very explicit results are obtained in the...