A bound for the torsion in the -theory of algebraic integers.
We extend the definition of Hochschild and cyclic homologies of a scheme over a commutative ring k to define the Hochschild homologies HH⁎(X/S) and cyclic homologies HC⁎(X/S) of a scheme X with respect to an arbitrary base scheme S. Our main purpose is to study product structures on the Hochschild homology groups HH⁎(X/S). In particular, we show that carries the structure of a graded algebra.
For a prime , we compute the algebraic -theory modulo and of the mod Adams summand, using topological cyclic homology. On the way, we evaluate its modulo and topological Hochschild homology. Using a localization sequence, we also compute the -theory modulo and of the first Morava -theory.
Because of its strong interaction with almost every part of pure mathematics, algebraic K-theory has had a spectacular development since its origin in the late fifties. The objective of this paper is to provide the basic definitions of the algebraic K-theory of rings and an overview of the main classical theorems. Since the algebraic K-groups of a ring R are the homotopy groups of a topological space associated with the general linear group over R, it is obvious that many general results follow...