La conjecture de Milnor
Dans cet article, nous définissons une catégorie des motifs sur une catégorie monoïdale symétrique vérifiant certaines hypothèses. Le rôle des espaces sur est joué par les monoïdes (non necessairement commutatifs) dans . Pour définir les morphismes dans , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes dans , où est le motif de Tate dans .
Giffen in [1], and Gillet-Grayson in [3], independently found a simplicial model for the loop space on Quillen's Q-construction. Their proofs work for exact categories. Here we generalise the results to the K-theory of triangulated categories. The old proofs do not generalise. Our new proof, aside from giving the generalised result, can also be viewed as an amusing new proof of the old theorems of Giffen and Gillet-Grayson.