Recollement of colimit categories and its applications
We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and -groups.
We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and -groups.
On montre que si la conjecture de Farrell-Jones en -théorie algébrique est vérifiée alors celle de la -théorie hermitienne est équivalente à l’existence d’un entier tel que “assembly map” soit un isomorphisme en degré et .
One defines a Riemann-Roch natural transformation from algebraic to topological higher bivariant K-theory in the category of complex spaces.