MacLane homology and topological Hochschild homology.
On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et...
This is the last of a series of three papers where we compute the unramified cohomology of quadrics in degree up to 4. Complete results were obtained in the two previous papers for quadrics of dimension and . Here we deal with the remaining dimensions between 5 and 10. We also prove that the unramified cohomology of Pfister quadrics with divisible coefficients always comes from the ground field, and that the same holds for their unramified Witt rings. We apply these results to real quadrics....