Displaying 21 – 40 of 67

Showing per page

On locally graded barely transitive groups

Cansu Betin, Mahmut Kuzucuoğlu (2013)

Open Mathematics

We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.

On soluble groups of automorphisms of nonorientable Klein surfaces

G. Gromadzki (1992)

Fundamenta Mathematicae

We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.

On the automorphism group of the countable dense circular order

J. K. Truss (2009)

Fundamenta Mathematicae

Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.

Currently displaying 21 – 40 of 67