Nested symmetric representation of elements of the Suzuki chain groups.
We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.
In this paper as the main result, we determine finite groups with the same prime graph as the automorphism group of a sporadic simple group, except .
Let be a finite group. The prime graph of is a simple graph whose vertex set is and two distinct vertices and are joined by an edge if and only if has an element of order . A group is called -recognizable by prime graph if there exist exactly nonisomorphic groups satisfying the condition . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that is recognizable, if is an odd prime and is odd. But for even , only the recognizability...
The character degree graph of a finite group is the graph whose vertices are the prime divisors of the irreducible character degrees of and two vertices and are joined by an edge if divides some irreducible character degree of . It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple...
Let be a finite group. The main supergraph is a graph with vertex set in which two vertices and are adjacent if and only if or . In this paper, we will show that if and only if , where .
Let be a finite group and let be the set of prime divisors of for which . The Gruenberg-Kegel graph of , denoted , is defined as follows: its vertex set is and two different vertices and are adjacent by an edge if and only if contains an element of order . The degree of a vertex in is denoted by and the -tuple is said to be the degree pattern of . Moreover, if is the vertex set of a connected component of , then the largest -number which divides , is said to be an...