Displaying 41 – 60 of 97

Showing per page

Nonassociativity in VOA theory and finite group theory

Jr. Griess, Robert L. (2010)

Commentationes Mathematicae Universitatis Carolinae

We discuss some examples of nonassociative algebras which occur in VOA (vertex operator algebra) theory and finite group theory. Methods of VOA theory and finite group theory provide a lot of nonassociative algebras to study. Ideas from nonassociative algebra theory could be useful to group theorists and VOA theorists.

On the recognizability of some projective general linear groups by the prime graph

Masoumeh Sajjadi (2022)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group. The prime graph of G is a simple graph Γ ( G ) whose vertex set is π ( G ) and two distinct vertices p and q are joined by an edge if and only if G has an element of order p q . A group G is called k -recognizable by prime graph if there exist exactly k nonisomorphic groups H satisfying the condition Γ ( G ) = Γ ( H ) . A 1-recognizable group is usually called a recognizable group. In this problem, it was proved that PGL ( 2 , p α ) is recognizable, if p is an odd prime and α > 1 is odd. But for even α , only the recognizability...

Recognition of characteristically simple group A 5 × A 5 by character degree graph and order

Maryam Khademi, Behrooz Khosravi (2018)

Czechoslovak Mathematical Journal

The character degree graph of a finite group G is the graph whose vertices are the prime divisors of the irreducible character degrees of G and two vertices p and q are joined by an edge if p q divides some irreducible character degree of G . It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple...

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

Several quantitative characterizations of some specific groups

A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is said to be an...

Currently displaying 41 – 60 of 97