Displaying 181 – 200 of 340

Showing per page

On lattice properties of S-permutably embedded subgroups of finite soluble groups

L. M. Ezquerro, M. Gómez-Fernández, X. Soler-Escrivà (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and H Hall π ( G ) such that H V Hall π ( V ) and 1 H U Hall π ( U ) . Suppose also H U is a Hall π-sub-group of some S-permutable subgroup of G. Then H U V Hall π ( U V ) and H U , H V Hall π ( U V ) . Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.

On loops whose inner permutations commute

Piroska Csörgö, Tomáš Kepka (2004)

Commentationes Mathematicae Universitatis Carolinae

Multiplication groups of (finite) loops with commuting inner permutations are investigated. Special attention is paid to the normal closure of the abelian permutation group.

On R -conjugate-permutability of Sylow subgroups

Xianhe Zhao, Ruifang Chen (2016)

Czechoslovak Mathematical Journal

A subgroup H of a finite group G is said to be conjugate-permutable if H H g = H g H for all g G . More generaly, if we limit the element g to a subgroup R of G , then we say that the subgroup H is R -conjugate-permutable. By means of the R -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of G and the R -conjugate-permutability of the Sylow subgroups of A and B under the condition that G = A B , where A and B are subgroups of G . Some results known in the literature are improved and...

On S -quasinormal and c -normal subgroups of a finite group

Shirong Li, Yangming Li (2008)

Czechoslovak Mathematical Journal

Let be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are presented: (1) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of H is either c -normal or S -quasinormally embedded in G . (2) G if and only if there is a normal subgroup H such that G / H and every maximal subgroup of all Sylow subgroups of F * ( H ) , the generalized Fitting subgroup of H , is either c -normal or S -quasinormally...

On soluble groups of automorphisms of nonorientable Klein surfaces

G. Gromadzki (1992)

Fundamenta Mathematicae

We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q ≥ 2 has at most 24(q-1) elements and that this bound is sharp for infinitely many values of q.

On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu, Yanyan Qiu (2015)

Czechoslovak Mathematical Journal

A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results improve...

On some permutable products of supersoluble groups.

Manuel J. Alejandre, A. Ballester-Bolinches, John Cossey, M. C. Pedraza-Aguilera (2004)

Revista Matemática Iberoamericana

It is well known that a group G = AB which is the product of two supersoluble subgroups A and B is not supersoluble in general. Under suitable permutability conditions on A and B, we show that for any minimal normal subgroup N both AN and BN are supersoluble. We then exploit this to establish some sufficient conditions for G to be supersoluble.

On subgroups of ZJ type of an F-injector for Fitting classes F between Ep*p and Ep*Sp.

Ana Martínez Pastor (1994)

Publicacions Matemàtiques

Let G be a finite group and p a prime. We consider an F-injector K of G, being F a Fitting class between Ep*p y Ep*Sp, and we study the structure and normality in G of the subgroups ZJ(K) and ZJ*(K), provided that G verifies certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, Canad. J. Math.20(1968), 555-564).

Currently displaying 181 – 200 of 340