Counting -groups and nilpotent groups
Let and be two groups of finite order , and suppose that they share a normal subgroup such that if or . Cases when is cyclic or dihedral and when for exactly pairs have been shown to be of crucial importance when studying pairs of 2-groups with the latter property. In such cases one can describe two general constructions how to get all possible from a given . The constructions, denoted by and , respectively, depend on a coset (or two cosets and ) modulo , and on an...
A group has the endomorphism kernel property (EKP) if every congruence relation on is the kernel of an endomorphism on . In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.
In the first part of this paper we prove without using the transfer or characters the equivalence of some conditions, each of which would imply p-nilpotence of a finite group G. The implication of p-nilpotence also can be deduced without the transfer or characters if the group is p-constrained. For p-constrained groups we also prove an equivalent condition so that should be p-nilpotent. We show an example that this result is not true for some non-p-constrained groups. In the second part of the...
A group has all of its subgroups normal-by-finite if is finite for all subgroups of . The Tarski-groups provide examples of -groups ( a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a -group with every subgroup normal-by-finite is locally finite. We also prove that if for every subgroup of , then contains an Abelian subgroup of index at most .
In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only -groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then is solvable.
In this paper it is proved that a finite group G with an automorphism of prime order r, such that is contained in a nilpotent subgroup H, with , is nilpotent provided that either is odd or, if is even, then r is not a Fermât prime.
In 1954, Kontorovich and Plotkin introduced the concept of a modular chain in a lattice to obtain a lattice-theoretic characterization of the class of torsion-free nilpotent groups. We determine the structure of finite groups with modular chains. It turns out that this class of groups lies strictly between the class of finite groups with lower semimodular subgroup lattice and the projective closure of the class of finite nilpotent groups.
Let be a finite group, the smallest prime dividing the order of and a Sylow -subgroup of with the smallest generator number . There is a set of maximal subgroups of such that . In the present paper, we investigate the structure of a finite group under the assumption that every member of is either -permutably embedded or weakly -permutable in to give criteria for a group to be -supersolvable or -nilpotent.