On p-Solubility and the Projection into a Sylow p-Subgroup.
A subgroup of a finite group is said to be conjugate-permutable if for all . More generaly, if we limit the element to a subgroup of , then we say that the subgroup is -conjugate-permutable. By means of the -conjugate-permutable subgroups, we investigate the relationship between the nilpotence of and the -conjugate-permutability of the Sylow subgroups of and under the condition that , where and are subgroups of . Some results known in the literature are improved and...
Let be a saturated formation containing the class of supersolvable groups and let be a finite group. The following theorems are presented: (1) if and only if there is a normal subgroup such that and every maximal subgroup of all Sylow subgroups of is either -normal or -quasinormally embedded in . (2) if and only if there is a normal subgroup such that and every maximal subgroup of all Sylow subgroups of , the generalized Fitting subgroup of , is either -normal or -quasinormally...
A subgroup of a finite group is said to be -supplemented in if there exists a subgroup of such that and is -permutable in . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group is solvable if every subgroup of odd prime order of is -supplemented in , and that is solvable if and only if every Sylow subgroup of odd order of is -supplemented in . These results improve...
Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition , where is the second Hilbert 2-class field of k.
Let G be a finite group and p a prime. We consider an F-injector K of G, being F a Fitting class between Ep*p y Ep*Sp, and we study the structure and normality in G of the subgroups ZJ(K) and ZJ*(K), provided that G verifies certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, Canad. J. Math.20(1968), 555-564).
We prove that if the average number of Sylow subgroups of a finite group is less than and not equal to , then is solvable or . In particular, if the average number of Sylow subgroups of a finite group is , then , where is the largest normal solvable subgroup of . This generalizes an earlier result by Moretó et al.
Gli autori studiano il sottogruppo intersezione dei sottogruppi massimali e non supersolubili di un gruppo finito e le relazioni tra la struttura di e quella di .
Theorem A yields the condition under which the number of solutions of equation in a finite -group is divisible by (here is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow -subgroups).