Subnormalizers and embedding properties of subgroups of finite groups.
Sia un gruppo finito non abeliano e il suo centro. Sia l’insieme parzialmente ordinato dei centralizzanti di . Si dice che ha «rango » se la lunghezza di è , e si dice che esso è un «-gruppo» se ogni è abeliano. Ogni -gruppo ha rango . Schmidt [10] ha classificato gli -gruppi. In questa Nota si classificano i gruppi di rango 1 che non sono -gruppi.
Sia un gruppo non abeliano né hamiltoniano, ed un intero . Si dice che appartiene a se tutti i sottogruppi non normali di hanno ordine . Sia un numero primo. In questa Nota vengono determinati: 1) tutti i -gruppi in (Teoremi 1 e 2); 2) tutti i -gruppi in per e (Teorema 3); 3) tutti i gruppi di esponente appartenenti ad (Teorema 4).
Si studiano le partizioni dei -gruppi finiti e, in particolare, le equipartizioni. Si danno risultati sulle equipartizioni dei -gruppi di classe submassimale.
Si studiano le partizioni dei -gruppi finiti e, in particolare, quelle con molti componenti di un dato ordine. Si deriva una condizione necessaria (Teorema 1) per l'esistenza di tali partizioni in termini di gradi dei caratteri irriducibili. Si deducono quindi alcuni corollari e si dà un'applicazione ai gruppi di matrici unitriangolari (Proposizione 3).
The object of this article is to show that a Jordan-Hölder class structure of a finite group determines abelian Hall subgroups of the group up to isomorphism. The proof uses this classification of the finite simple groups.