Factorizations of Finite Groups.
Let be a finite group, the smallest prime dividing the order of and a Sylow -subgroup of with the smallest generator number . There is a set of maximal subgroups of such that . In the present paper, we investigate the structure of a finite group under the assumption that every member of is either -permutably embedded or weakly -permutable in to give criteria for a group to be -supersolvable or -nilpotent.
Suppose G is a finite group and H is a subgroup of G. H is called weakly s-permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably embedded subgroup of G contained in H such that G = HT and ; H is called weakly s-supplemented in G if there is a subgroup T of G such that G = HT and , where is the subgroup of H generated by all those subgroups of H which are s-permutable in G. We investigate the influence of the existence of s-permutably embedded and weakly s-supplemented...
Un sottogruppo di un gruppo è chiamato seminormale se è permutabile con ogni sottogruppo di un conveniente supplemento di in (X. SU [2]). Nel nostro lavoro vengono caratterizzati tutti i gruppi finiti in cui ogni sottogruppo di Sylow è seminormale. Viene anche dimostrato che ogni -gruppo finito ( primo dispari) in cui ogni sottogruppo di Sylow è seminormale gode della proprietà che tutti i suoi sottogruppi sono a due a due permutabili.
A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable...