Finite groups in which -quasinormality is a transitive relation
A group is said to be a -group if for every divisor of the order of , there exists a subgroup of of order such that is normal or abnormal in . We give a complete classification of those groups which are not -groups but all of whose proper subgroups are -groups.
Si determinano i gruppi finiti il cui insieme parzialmente ordinato delle classi di coniugio dei sottogruppi è isomorfo a quello di un gruppo abeliano.
Counting subgroups of finite groups is one of the most important topics in finite group theory. We classify the finite non-nilpotent groups whose set of numbers of subgroups of possible orders has exactly two elements. We show that if is a non-nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements, then has a normal Sylow subgroup of prime order and is solvable. Moreover, as an application we give a detailed description of non-nilpotent groups with...
In this paper, we consider finite groups with precisely one nonlinear nonfaithful irreducible character. We show that the groups of order 16 with nilpotency class 3 are the only -groups with this property. Moreover we completely characterize the nilpotent groups with this property. Also we show that if is a group with a nontrivial center which possesses precisely one nonlinear nonfaithful irreducible character then is solvable.
In this paper it is proved that a finite group G with an automorphism of prime order r, such that is contained in a nilpotent subgroup H, with , is nilpotent provided that either is odd or, if is even, then r is not a Fermât prime.
This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.
We describe finite groups which contain just one conjugate class of self-normalizing subgroups.
The notions of permutable and globally permutable lattices were first introduced and studied by J. Krempa and B. Terlikowska-Osłowska [4]. These are lattices preserving many interesting properties of modular lattices. In this paper all finite groups with globally permutable lattices of subgroups are described. It is shown that such finite p-groups are exactly the p-groups with modular lattices of subgroups, and that the non-nilpotent groups form an essentially larger class though they have a description...