Near Frattini subgroups of residually finite generalized free products of groups.
The question of whether two parabolic elements A, B of SL2(C) are a free basis for the group they generate is considered. Some known results are generalized, using the parameter τ = tr(AB) - 2. If τ = a/b ∈ Q, |τ| < 4, and |a| ≤ 16, then the group is not free. If the subgroup generated by b in Z / aZ has a set of representatives, each of which divides one of b ± 1, then the subgroup of SL2(C) will not be free.
We show that a locally graded group with a finite number m of non-(nilpotent of class at most n) subgroups is (soluble of class at most [log₂n] + m + 3)-by-(finite of order ≤ m!). We also show that the derived length of a soluble group with a finite number m of non-(nilpotent of class at most n) subgroups is at most [log₂ n] + m + 1.
In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.
Let be a field, G a reductive algebraic -group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of -points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, ) in G = SL(m, ) we have N ≅ G 1 ⋊ µm(), the semidirect product of G 1 by the group of m-th roots of unity in . The normalizers of the even orthogonal and symplectic subgroup of SL(2n, ) were computed in [Širola B., Normalizers and self-normalizing...