Displaying 21 – 40 of 42

Showing per page

On some properties of pronormal subgroups

Leonid Kurdachenko, Alexsandr Pypka, Igor Subbotin (2010)

Open Mathematics

New results on tight connections among pronormal, abnormal and contranormal subgroups of a group have been established. In particular, new characteristics of pronormal and abnormal subgroups have been obtained.

On some soluble groups in which U -subgroups form a lattice

Leonid A. Kurdachenko, Igor Ya. Subbotin (2007)

Commentationes Mathematicae Universitatis Carolinae

The article is dedicated to groups in which the set of abnormal and normal subgroups ( U -subgroups) forms a lattice. A complete description of these groups under the additional restriction that every counternormal subgroup is abnormal is obtained.

On strong uniform dimension of locally finite groups

A. Sakowicz (2003)

Colloquium Mathematicae

We give the description of locally finite groups with strongly balanced subgroup lattices and we prove that the strong uniform dimension of such groups exists. Moreover we show how to determine this dimension.

On the Cantor-Bendixson rank of metabelian groups

Yves Cornulier (2011)

Annales de l’institut Fourier

We study the Cantor-Bendixson rank of metabelian and virtually metabelian groups in the space of marked groups, and in particular, we exhibit a sequence ( G n ) of 2-generated, finitely presented, virtually metabelian groups of Cantor-Bendixson rank  ω n .

On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups

Shrawani Mitkari, Vilas Kharat (2024)

Mathematica Bohemica

In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups G are studied in respect of formation of lattices L ( G ) and sublattices of L ( G ) . It is proved that the collections of all pronormal subgroups of A n and S n do not form sublattices of respective L ( A n ) and L ( S n ) , whereas the collection of all pronormal subgroups LPrN ( Dic n ) of a dicyclic group is a sublattice of L ( Dic n ) . Furthermore, it is shown that L ( Dic n ) and LPrN ( Dic n ) are lower semimodular lattices.

Currently displaying 21 – 40 of 42