Displaying 21 – 40 of 148

Showing per page

A locally commutative free group acting on the plane

Kenzi Satô (2003)

Fundamenta Mathematicae

The purpose of this paper is to prove the existence of a free subgroup of the group of all affine transformations on the plane with determinant 1 such that the action of the subgroup is locally commutative.

A nilpotency condition for finitely generated soluble groups

Costantino Delizia (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that if k > 1 is an integer and G is a finitely generated soluble group such that every infinite set of elements of G contains a pair which generates a nilpotent subgroup of class at most k , then G is an extension of a finite group by a torsion-free k -Engel group. As a corollary, there exists an integer n , depending only on k and the derived length of G , such that G / Z n G is finite. For k < 4 , such n depends only on k .

A note on central automorphisms of groups

Giovanni Cutolo (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A characterization of central automorphisms of groups is given. As an application, we obtain a new proof of the centrality of power automorphisms.

A note on infinite a S -groups

Reza Nikandish, Babak Miraftab (2015)

Czechoslovak Mathematical Journal

Let G be a group. If every nontrivial subgroup of G has a proper supplement, then G is called an a S -group. We study some properties of a S -groups. For instance, it is shown that a nilpotent group G is an a S -group if and only if G is a subdirect product of cyclic groups of prime orders. We prove that if G is an a S -group which satisfies the descending chain condition on subgroups, then G is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an a S -group....

Currently displaying 21 – 40 of 148