Intermediate subgroups of the Steinberg groups over the field of fractions of a principal ideal ring.
Given a class of finite groups and a finite group , the authors study the subgroup intersection of maximal subgroups that do not belong to .
We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.
In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type. This generalises results of Cartwright and Woess where buildings are studied, Lindlbauer and Voit where buildings are studied, and Sawyer where homogeneous trees are studied (these are buildings).