On genus and embeddings of torsion-free nilpotent groups of class two.
In questo lavoro si studiano i gruppi , , degli automorfismi di un gruppo che fissano — come insiemi — tutti i sottogruppi di che risultano essere rispettivamente subnormali, subnormali di difetto al più , oppure che sono compresi tra un sottogruppo caratteristico ed il suo derivato. Si danno condizioni sufficienti affinché tali gruppi siano parasolubili di para-altezza al più 2 o 3. Si generalizzano così risultati da [4], [7], [8], [10].
2000 Mathematics Subject Classification: 20F16, 20E15.Groups in which every contranormal subgroup is normally complemented has been considered. The description of such groups G with the condition Max-n and such groups having an abelian nilpotent residual satisfying Min-G have been obtained.
A subgroup of a group is nearly maximal if the index is infinite but every subgroup of properly containing has finite index, and the group is called nearly if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly if and only if it is either cyclic or dihedral.
The following results are proved: The center of any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group is trivial; Any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group cannot be expressed as a product of two nontrivial subgroups. These two theorems imply a unique decomposition theorem for a class of Coxeter groups. We also prove that the orbit of each element other than the identity under the conjugation action in an irreducible, infinite, nonaffine...