On extensions of an elementary abelian group of order by
It is well known that for the ring H(ℤ) of integral quaternions the unit group U(H(ℤ) is finite. On the other hand, for the rational quaternion algebra H(ℚ), its unit group is infinite and even contains a nontrivial free subgroup. In this note (see Theorem 1.5 and Corollary 2.6) we find all intermediate rings ℤ ⊂ A ⊆ ℚ such that the group of units U(H(A)) of quaternions over A contains a nontrivial free subgroup. In each case we indicate such a subgroup explicitly. We do our best to keep the arguments...
Let A ⊆ ℚ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra H(A) to units of certain rings of generalized quaternions H(A,a,b) = ((-a,-b)/A), where a,b ∈ A. Next we show that there is an algebra embedding of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.
In questo lavoro si studiano i gruppi , , degli automorfismi di un gruppo che fissano — come insiemi — tutti i sottogruppi di che risultano essere rispettivamente subnormali, subnormali di difetto al più , oppure che sono compresi tra un sottogruppo caratteristico ed il suo derivato. Si danno condizioni sufficienti affinché tali gruppi siano parasolubili di para-altezza al più 2 o 3. Si generalizzano così risultati da [4], [7], [8], [10].
2000 Mathematics Subject Classification: 20F16, 20E15.Groups in which every contranormal subgroup is normally complemented has been considered. The description of such groups G with the condition Max-n and such groups having an abelian nilpotent residual satisfying Min-G have been obtained.
A subgroup of a group is nearly maximal if the index is infinite but every subgroup of properly containing has finite index, and the group is called nearly if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly if and only if it is either cyclic or dihedral.