Displaying 81 – 100 of 126

Showing per page

Sui gruppi finiti i cui sottogruppi non normali hanno tutti lo stesso ordine

Guido Zappa (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia G un gruppo non abeliano né hamiltoniano, ed n un intero 2 . Si dice che G appartiene a S n se tutti i sottogruppi non normali di G hanno ordine n . Sia p un numero primo. In questa Nota vengono determinati: 1) tutti i p -gruppi in S p (Teoremi 1 e 2); 2) tutti i p -gruppi in S p i per i 2 e p 3 (Teorema 3); 3) tutti i gruppi di esponente 4 appartenenti ad S 4 (Teorema 4).

Currently displaying 81 – 100 of 126