Subgroups of finite index in generalized -groups
Sia un gruppo non abeliano né hamiltoniano, ed un intero . Si dice che appartiene a se tutti i sottogruppi non normali di hanno ordine . Sia un numero primo. In questa Nota vengono determinati: 1) tutti i -gruppi in (Teoremi 1 e 2); 2) tutti i -gruppi in per e (Teorema 3); 3) tutti i gruppi di esponente appartenenti ad (Teorema 4).