Displaying 981 – 1000 of 1792

Showing per page

Simple group contain minimal simple groups.

Michael J. J. Barry, Michael B. Ward (1997)

Publicacions Matemàtiques

It is a consequence of the classification of finite simple groups that every non-abelian simple group contains a subgroup which is a minimal simple group.

Simplicity of Neretin's group of spheromorphisms

Christophe Kapoudjian (1999)

Annales de l'institut Fourier

Denote by 𝒯 n , n 2 , the regular tree whose vertices have valence n + 1 , 𝒯 n its boundary. Yu. A. Neretin has proposed a group N n of transformations of 𝒯 n , thought of as a combinatorial analogue of the diffeomorphism group of the circle. We show that N n is generated by two groups: the group Aut ( 𝒯 n ) of tree automorphisms, and a Higman-Thompson group G n . We prove the simplicity of N n and of a family of its subgroups.

Small profinite m-stable groups

Frank O. Wagner (2003)

Fundamenta Mathematicae

A small profinite m-stable group has an open abelian subgroup of finite ℳ-rank and finite exponent.

Sofic groups are not locally embeddable into finite Moufang loops

Heghine Ghumashyan, Jaroslav Guričan (2022)

Mathematica Bohemica

We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).

Soluble Groups with Many Černikov Quotients

Silvana Franciosi, Francesco de Giovanni (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H N con N p -gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...

Solvable groups with many BFC-subgroups.

O. D. Artemovych (2000)

Publicacions Matemàtiques

We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.

Currently displaying 981 – 1000 of 1792