Displaying 1141 – 1160 of 1792

Showing per page

The nilpotency of some groups with all subgroups subnormal.

Leonid A. Kurdachenko, Howard Smith (1998)

Publicacions Matemàtiques

Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.

The number of conjugacy classes of elements of the Cremona group of some given finite order

Jérémy Blanc (2007)

Bulletin de la Société Mathématique de France

This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5 , and that it is equal to 3 (respectively 9 ) if n = 9 (respectively if n = 15 ) and to 1 for all remaining odd orders. Some precise representative elements of the classes are given.

The p-period of an infinite group.

Xia Yining (1992)

Publicacions Matemàtiques

For Γ a group of finite virtual cohomological dimension and a prime p, the p-period of Γ is defined to be the least positive integer d such that Farrell cohomology groups Hi(Γ; M) and Hi+d(Γ; M) have naturally isomorphic ZΓ modules M.We generalize a result of Swan on the p-period of a finite p-periodic group to a p-periodic infinite group, i.e., we prove that the p-period of a p-periodic group Γ of finite vcd is 2LCM(|N(〈x〉) / C(〈x〉)|) if the Γ has a finite quotient whose a p-Sylow subgroup is elementary...

Currently displaying 1141 – 1160 of 1792