Dividierbarkeit und Typenbedingungen in verallgemeinerten nilpotenten Gruppen.
A group has all of its subgroups normal-by-finite if is finite for all subgroups of . The Tarski-groups provide examples of -groups ( a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a -group with every subgroup normal-by-finite is locally finite. We also prove that if for every subgroup of , then contains an Abelian subgroup of index at most .
Given a field K of characteristic p > 2 and a finite group G, necessary and sufficient conditions for the unit group U(KG) of the group algebra KG to be centrally metabelian are obtained. It is observed that U(KG) is centrally metabelian if and only if KG is Lie centrally metabelian.
This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972,...
A subgroup H of a group G is said to be nearly normal in G if it has finite index in its normal closure in G. A well-known theorem of B.H. Neumann states that every subgroup of a group G is nearly normal if and only if the commutator subgroup G' is finite. In this article, groups in which the intersection and the join of each system of nearly normal subgroups are likewise nearly normal are considered, and some sufficient conditions for such groups to be finite-by-abelian are given.
Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( <x>^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that...
The main result of this note is that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent if and only if every infinite subset contains two distinct elements , such that