Improving tameness for metabelian groups.
Let be a field, be a vector space over , be the group of all automorphisms of the vector space . A subspace is called almost -invariant, if is finite. In the current article, we begin the study of those subgroups of for which every subspace of is almost -invariant. More precisely, we consider the case when is a periodic group. We prove that in this case includes a -invariant subspace of finite codimension whose subspaces are -invariant.
Let F be a field, A be a vector space over F, GL(F, A) be the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dim F(B/Core G(B)) is finite. In the current article, we study linear groups G such that every subspace of A is either nearly G-invariant or almost G-invariant in the case when G is a soluble p-group where p = char F.
Fitting classes and injectors are discussed in the class of -groups. A necessary and sufficient condition for the existence of injectors is given; it is also shown that, when this condition holds, the injectors form a unique conjugacy class.