Equations in groups, with special emphasis on localization and torsion - II
Let F C 0 be the class of all finite groups, and for each nonnegative integer n define by induction the group class FC^(n+1) consisting of all groups G such that for every element x the factor group G/CG ( <x>^G ) has the property FC^n . Thus FC^1 -groups are precisely groups with finite conjugacy classes, and the class FC^n obviously contains all finite groups and all nilpotent groups with class at most n. In this paper the known theory of FC-groups is taken as a model, and it is shown that...