Displaying 21 – 40 of 57

Showing per page

Infinite dimensional linear groups with a large family of G -invariant subspaces

L. A. Kurdachenko, A. V. Sadovnichenko, I. Ya. Subbotin (2010)

Commentationes Mathematicae Universitatis Carolinae

Let F be a field, A be a vector space over F , GL ( F , A ) be the group of all automorphisms of the vector space A . A subspace B is called almost G -invariant, if dim F ( B / Core G ( B ) ) is finite. In the current article, we begin the study of those subgroups G of GL ( F , A ) for which every subspace of A is almost G -invariant. More precisely, we consider the case when G is a periodic group. We prove that in this case A includes a G -invariant subspace B of finite codimension whose subspaces are G -invariant.

Non-maximal cyclic group actions on compact Riemann surfaces.

David Singerman, Paul Watson (1997)

Revista Matemática de la Universidad Complutense de Madrid

We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).

Polynomials over Q solving an embedding problem

Nuria Vila (1985)

Annales de l'institut Fourier

The fields defined by the polynomials constructed in E. Nart and the author in J. Number Theory 16, (1983), 6–13, Th. 2.1, with absolute Galois group the alternating group A n , can be embedded in any central extension of A n if and only if n 0 ( m o d 8 ) , or n 2 ( m o d 8 ) and n is a sum of two squares. Consequently, for theses values of n , every central extension of A n occurs as a Galois group over Q .

Currently displaying 21 – 40 of 57