Sur les automorphismes extérieurs des groupes hyperboliques
Björner (1984) a montré que l’ordre faible de Bruhat défini sur un groupe de Coxeter fini (Bourbaki 1969) est un treillis. Dans le cas du groupe symétrique ce résultat (treillis permutoèdre) a été prouvé par Guilbaud-Rosenstiehl (1963). Dans ce papier nous montrons que des propriétés connues des treillis permutoèdres peuvent s’étendre à tous les treillis de Coxeter finis et qu’inversement des propriétés démontrées sur tous les Coxeter finis ont des retombées intéressantes sur les permutoèdres....
We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.