Cœur et nombre d'intersection pour les actions de groupes sur les arbres
We show that the second group of cohomology with compact supports is nontrivial for three-dimensional systolic pseudomanifolds. It follows that groups acting geometrically on such spaces are not Poincaré duality groups.
Traitant la série de Poincaré d’un groupe discret d’isométries en courbure négative comme un noyau de Green, on établit une théorie du potentiel assez comparable à la théorie classique pour affirmer un parallèle entre densités conformes à la Patterson-Sullivan et densités harmoniques, et notamment définir une frontière de Martin où les densités ergodiques forment la partie minimale, et enfin l’identifier géométriquement sous hypothèse d’hyperbolicité.
Étant donné un automorphisme d’un groupe libre et un représentant topologique train-track de son inverse, on peut construire un arbre réel appelé arbre répulsif de . Le groupe libre agit sur par isométries. La dynamique engendrée par peut être représentée par l’action du groupe libre restreinte à un sous-ensemble compact bien choisi du complété métrique de . Cet article construit ce sous-ensemble sur une classe d’exemples en introduisant des opérations appelées substitutions d’arbre ;...
We introduce the notion of a critical constant for recurrence of random walks on -spaces. For a subgroup of a finitely generated group the critical constant is an asymptotic invariant of the quotient -space . We show that for any infinite -space . We say that is very small if . For a normal subgroup the quotient space is very small if and only if it is finite. However, we give examples of infinite very small -spaces. We show also that critical constants for recurrence can be used...
On montre qu’un groupe hyperbolique non élémentaire est à croissance uniformément exponentielle, c’est-à-dire qu’il existe une constante strictement plus grande que 1, ne dépendant que du groupe , telle que le taux de croissance exponentiel de relatif à n’importe quel système générateur est plus grand que . On redémontre ce faisant qu’un groupe hyperbolique n’a qu’un nombre fini de classes de conjugaison de sous-groupes finis.