The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 13 of 13

Showing per page

Spherical varieties and Wahl’s conjecture

Nicolas Perrin (2014)

Annales de l’institut Fourier

Using the theory of spherical varieties, we give a type independent very short proof of Wahl’s conjecture for cominuscule homogeneous varieties for all primes different from 2.

Sur la cohomologie de la compactification des variétés de Deligne-Lusztig

Haoran Wang (2014)

Annales de l’institut Fourier

Nous étudions la cohomologie de la compactification des variétés de Deligne-Lusztig associées aux éléments de Coxeter. Nous présentons une conjecture des relations entre la cohomologie de la variété et la cohomologie de ses compactifications partielles. Nous prouvons la conjecture dans le cas du groupe linéaire général.

Sur l’homologie des groupes orthogonaux et symplectiques à coefficients tordus

Aurélien Djament, Christine Vespa (2010)

Annales scientifiques de l'École Normale Supérieure

On calcule dans cet article l’homologie stable des groupes orthogonaux et symplectiques sur un corps fini k à coefficients tordus par un endofoncteur usuel F des k -espaces vectoriels (puissance extérieure, symétrique, divisée...). Par homologie stable, on entend, pour tout entier naturel i , les colimites des espaces vectoriels H i ( O n , n ( k ) ; F ( k 2 n ) ) et H i ( Sp 2 n ( k ) ; F ( k 2 n ) ) — dans cette situation, la stabilisation (avec une borne explicite en fonction de i et F ) est un résultat classique de Charney. Tout d’abord, nous donnons un cadre...

Currently displaying 1 – 13 of 13

Page 1