Levi-Curvature of Manifolds with a Stein Rational Fibration.
In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.
Let be a connected complex reductive group where is a finite-dimensional complex vector space. Let and let . Following Raïs we say that the orbit is characteristic for if the identity component of is . If is semisimple, we say that is semi-characteristic for if the identity component of is an extension of by a torus. We classify the -orbits which are not (semi)-characteristic in many cases.