On certain subsocles of a primary abelian group
Let be an abelian group, a commutative ring of prime characteristic with identity and a commutative twisted group ring of over . Suppose is a fixed prime, and are the -components of and of the unit group of , respectively. Let be the multiplicative group of and let be the -th Ulm-Kaplansky invariant of where is any ordinal. In the paper the invariants , , are calculated, provided . Further, a commutative ring with identity of prime characteristic is said...
It is proved that if is an abelian -group with a pure subgroup so that is at most countable and is either -totally projective or -summable, then is either -totally projective or -summable as well. Moreover, if in addition is nice in , then being either strongly -totally projective or strongly -summable implies that so is . This generalizes a classical result of Wallace (J. Algebra, 1971) for totally projective -groups as well as continues our recent investigations in (Arch....
A necessary and sufficient condition is given for the direct sum of two -groups to be (quasi-isomorphic to) a -group. A -group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.
-groups are a class of torsionfree Abelian groups of finite rank, part of the main class of Butler groups. In the paper C. Metelli, On direct sums of -groups, Comment. Math. Univ. Carolinae 34 (1993), 587–591, the problem of direct sums of -groups was discussed, and a necessary and sufficient condition was given for the direct sum of two -groups to be a -group. While sufficiency holds, necessity was wrongly claimed; we solve here the problem, and in the process study a curious hierarchy among...
An elementary proof is given for Hutchinson's duality theorem, which states that if a lattice identity λ holds in all submodule lattices of modules over a ring R with unit element then so does the dual of λ.