A note on products of infinite cyclic groups
It is proved that if is a pure -projective subgroup of the separable abelian -group for such that , then is -projective as well. This generalizes results due to Irwin-Snabb-Cutler (CommentṀathU̇nivṠtṖauli, 1986) and the author (Arch. Math. (Brno), 2005).
It is shown, under ZFC, that a -group has the interesting property of being -prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on -groups.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves for x → ∞ asymptotically like . We prove, among other results, that for all integers n₁,n₂ with 1 < n₁|n₂.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves, for x → ∞, asymptotically like . In this article, it is proved that for every prime p, , and it is also proved that if and m is large enough. In particular, it is shown that for...
Un gruppo abeliano senza torsione ed indecomponibile è detto iperindecomponibile se tutti i sottogruppi propri del suo inviluppo iniettivo che lo contengono sono indecomponibili. In questo lavoro si caratterizza la classe dei gruppi iperindecomponibili per mezzo di loro proprietà locali. I gruppi iperindecomponibili omogenei sono caratterizzati tramite la proprietà «factor-splitting».
A simple proof is given of a well-known result of the existance of lattice-isomorphisms between locally nilpotent quaternionfree modular groups and abelian groups.