Semigroup crossed products and Hecke algebras arising from number fields.
We initiate the study of sets of p-multiplicity in locally compact groups and their operator versions. We show that a closed subset E of a second countable locally compact group G is a set of p-multiplicity if and only if is a set of operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation properties for unions and direct products, and prove a p-version of the Stone-von Neumann Theorem.
Let G be a locally compact abelian group and ℳ be a semifinite von Neumann algebra with a faithful semifinite normal trace τ. We study Hilbert transforms associated with G-flows on ℳ and closed semigroups Σ of Ĝ satisfying the condition Σ ∪ (-Σ) = Ĝ. We prove that Hilbert transforms on such closed semigroups satisfy a weak-type estimate and can be extended as linear maps from L¹(ℳ,τ) into . As an application, we obtain a Matsaev-type result for p = 1: if x is a quasi-nilpotent compact operator...