Displaying 381 – 400 of 633

Showing per page

On the uniqueness of uniform norms and C*-norms

P. A. Dabhi, H. V. Dedania (2009)

Studia Mathematica

We prove that a semisimple, commutative Banach algebra has either exactly one uniform norm or infinitely many uniform norms; this answers a question asked by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved for C*-norms on *-semisimple, commutative Banach *-algebras. These properties are preserved if the identity is adjoined. We also show that a commutative Beurling *-algebra L¹(G,ω) has exactly one uniform norm if and only if it has exactly one C*-norm; this is...

Perturbations compactes des représentations d'un groupe dans un espace de Hilbert. II

Pierre de La Harpe, Max Karoubi (1978)

Annales de l'institut Fourier

Soit T une application d’un groupe G dans le groupe U ( H ) des opérateurs unitaires sur un espace de Hilbert. Si T ( g h ) - T ( g ) T ( h ) est un opérateur compact pour tous g , h G , quelles sont les obstructions à l’existence d’un homomorphisme S : G U ( H ) avec S ( g ) T ( g ) compact pour tout g G  ? Nous étudions ici les cas où G est une somme amalgamée de groupes finis et où G est un produit semi-direct d’un groupe fini par Z .

Poincaré inequalities and rigidity for actions on Banach spaces

Piotr Nowak (2015)

Journal of the European Mathematical Society

The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group G on a reflexive Banach space X has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that H 1 ( G , π ) = 0 for every isometric representation π of G on X . The condition is expressed in terms of p -Poincaré constants and we provide examples...

Currently displaying 381 – 400 of 633