On the support of the conjugation representation for solvable locally compact groups.
We prove that a semisimple, commutative Banach algebra has either exactly one uniform norm or infinitely many uniform norms; this answers a question asked by S. J. Bhatt and H. V. Dedania [Studia Math. 160 (2004)]. A similar result is proved for C*-norms on *-semisimple, commutative Banach *-algebras. These properties are preserved if the identity is adjoined. We also show that a commutative Beurling *-algebra L¹(G,ω) has exactly one uniform norm if and only if it has exactly one C*-norm; this is...
Improving the recent result of the author we show that is equivalent to for every subgroup of a Hausdorff locally compact group .
Soit une application d’un groupe dans le groupe des opérateurs unitaires sur un espace de Hilbert. Si est un opérateur compact pour tous , quelles sont les obstructions à l’existence d’un homomorphisme avec compact pour tout ? Nous étudions ici les cas où est une somme amalgamée de groupes finis et où est un produit semi-direct d’un groupe fini par .
The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group on a reflexive Banach space has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that for every isometric representation of on . The condition is expressed in terms of -Poincaré constants and we provide examples...