A 2-dimensional Algebraic Variety With 27 Rectilinear Generators and 108 Trisecants and its Connection With the Maximal Exceptional Simple lie Group
In this note, we generalize the results in our previous paper on the Casimir operator and Berezin transform, by showing the -continuity of a generalized Berezin transform associated with a branching problem for a class of unitary representations defined by invariant elliptic operators; we also show, that under suitable general conditions, this generalized Berezin transform is -continuous for
A result by G. H. Hardy ([11]) says that if f and its Fourier transform f̂ are and respectively for some m,n ≥ 0 and α > 0, then f and f̂ are and respectively for some polynomials P and P’. If in particular f is as above, but f̂ is , then f = 0. In this article we will prove a complete analogue of this result for connected noncompact semisimple Lie groups with finite center. Our proof can be carried over to the real reductive groups of the Harish-Chandra class.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.