Matrix canonical realizations of the Lie algebra o ( m , n ) . I. Basic formulæ and classification M. Havlíček, P. Exner (1975) Annales de l'I.H.P. Physique théorique
Matrix elements and highest weight Wigner coefficients of G L ( n , ℂ ) W. H. Klink, T. Ton-That (1982) Annales de l'I.H.P. Physique théorique
Models for quadratic algebras associated with second order superintegrable systems in 2D. Kalnins, Ernest G., Miller, Willard jun., Post, Sarah (2008) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Models of quadratic algebras generated by superintegrable systems in 2D. Post, Sarah (2011) SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Models of representations of some classical supergroups. D. Leites, V. Serganova (1991) Mathematica Scandinavica