A characterization of a two-weight inequality for discrete two-dimensional Hardy operators.
The notion of -stability is defined using the lower Dini directional derivatives and was introduced by the authors in their previous papers. In this paper we prove that the class of -stable functions coincides with the class of C functions. This also solves the question posed by the authors in SIAM J. Control Optim. 45 (1) (2006), pp. 383–387.
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
We give a complete characterization of closed sets whose distance function is DC (i.e., is the difference of two convex functions on ). Using this characterization, a number of properties of such sets is proved.
Let 1 ≤ p < ∞, k ≥ 1, and let Ω ⊂ ℝⁿ be an arbitrary open set. We prove a converse of the Calderón-Zygmund theorem that a function possesses an derivative of order k at almost every point x ∈ Ω and obtain a characterization of the space . Our method is based on distributional arguments and a pointwise inequality due to Bojarski and Hajłasz.
En este artículo revisamos un famoso teorema, descubierto por H. Steinhaus en 1936, en el que se da una condición suficiente que permite obtener las funciones coordenadas de una curva que llena el cuadrado unidad. Ponemos de manifiesto que el recíproco de este teorema no se cumple para la curva de Lebesgue. Aquí proponemos un teorema de caracterización de curvas que llenan el espacio, basado en una condición de llenado. Asimismo, damos una caracterización constructiva de esta condición de llenado...